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Abstract
The Introduction presents a brief review of the approaches to

the development of mathematical simulation methods for 2D

and 3D gas dynamic flows, used by VNIIEF. In the main part of

the Report the development principles of the regular

Lagrangian-Eulerian technique (LEGAK), based on the

application of the concentration method for computation of

gas dynamic flows with big contact boundaries deformations,

are presented in detail. The examples of several problem

computations are presented.
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The application area of developed in VNIIEF gas
dynamic techniques is computation of multi-
dimensional non-stationary flows of
inhomogeneous continuum with consideration of
different physical phenomena, such as: gas
dynamics, elastoplasticity, viscosity, detonation of
explosives, radiant heat conductivity, etc.

The special features of simulated problems are
the existence of several physical substances in
studied systems and big deformations of contact
boundaries.

Introduction
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Introduction
As we know, numerical simulation of such flows, especially

in the 3D case, is followed by many troubles. These troubles
come from two contradictory requirements to numerical
techniques: the possibility of computation of flows with big
deformations of contact boundaries in the “crash-proof/hand-off”
mode (which is especially important at parallel computations on
cluster systems) and the necessity of high computation precision
(required by certain applications).

Various approaches to these troubles, based on the
compromise between the precision and “crash-proofness”, led to
the development of a row of finite-difference methods and
techniques, which differ from each other in the types of used
computation grids (regular, non-regular, Lagrangian, Lagrangian-
Eulerian and Eulerian ones) and the methods of detachment of
contact boundaries.
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Introduction

• The DMK and MEDUZA techniques are based on the application of
unstructured Lagrangian grids. In MEDUZA there is the possibility
of grid topology variation in the course of problem solution
(including variation in the vicinity of contact boundaries) and
appropriate recalculation of values in accordance with convection
flows.

• In the regular Lagrangian technique D local correction of fragments
of the Lagrangian grid at big deformations by means of  automatic
improvement of “bad” points of the 3D Lagrangian grid and
recalculation of grid values for the improved grid is used.  At point
improvement the technique of “mixed” cell computation is used on
the interface of different substances, which is based on the
introduction of adaptive grids in the cells with several substances.
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Introduction
In some VNIIEF techniques, which use regular computation grids,
a part of (or all) the contact surfaces with complicated topologies or
seriously deformed during computation, are computed on a grid,
which lines do not coincide with them. It is carried out by means of
the concentration method developed in VNIIEF (Bakhrakh et al.)
for computation of so-called “mixed” cells occurring in this case.
Such approach is used in the EGAK and TREK  Eulerian
techniques, the LEGAK-2D, LEGAK-3D, MIMOZA,  RAMZES-KP
Eulerian-Lagrangian techniques. The algorithms, resident in the
concentration method, are also used in the MEDUZA non-regular
technique
Realizations of the concentration method in the techniques
specified above differ from each other in the models and
computation algorithms for “mixed” cells on the Lagrangian and
Eulerian (calculation of convection flow values) stages. Most
techniques use special donor-acceptor algorithm of convective
flow computation to avoid computation diffusion. Apart from
this, the specified methods are characterized by the topology of
used regular grids and finite-difference schemes.
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Introduction

To improve the quality of difference approximation
of homogeneous substance convective flows on the
Eulerian computation stage in the techniques,
which use the regular computational grid, the PPM
method (Wodward and Colella, 1984) and its
modifications have been widely used. Such
approach combined with the concentration method
in “mixed” cells, is used in the EGAK, TREK,
LEGAK, RAMZES-KP techniques. In MIMOZA the
modified method of finite linear reconstruction is
used.
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Introduction
Speaking about “subgrid” approaches to the description

of contact boundaries, developed in VNIIEF, we should
mention the method of adaptive refined grids, used, for
example, in the EGAK++ technique, and the method of
explicit detachment of contact boundaries, which do not
coincide with the grid lines, that is the method of contact line
detachment (VKL), developed in the frames of the LEGAK
technique. The method of contact line detachment (VKL) as
the lines, which motion is calculated in a certain way, traces
back to Nokh’s work (1964).

Another VNIIEF approach to the development of
numerical algorithms is the realization of the discrete method
of smoothed particles (the SPH technique).
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LEGAK-3D Method

The main part of the Report contains a more
detailed description of the Regular Lagrangian-
Eulerian technique LEGAK-3D, based on the
application of the concentration method for the
computations of gas dynamic flows with big
deformations of contact boundaries. Some
examples of problem computations are presented.

LEGAK-3D Method for Computation of 3D Non-LEGAK-3D Method for Computation of 3D Non-
Stationary Flows of Multi-Component ContinuumStationary Flows of Multi-Component Continuum
and Principles of Its Realization on Multiprocessorand Principles of Its Realization on Multiprocessor
Computers with Distributed MemoryComputers with Distributed Memory
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Principles of the LEGAK technique
The LEGAK technique is the fininte-difference Lagrangiean-
Eulerian technique, which uses a regular grid.  In the 3D geometry
it is the grid, made of prominent hexahedrons.

In the LEGAK technique the following is applied:
1. The Lagrangian-Eulerian computational grid, which is partially carried
along by the substance; at that it is admitted that the surfaces of the
computational grid may both coincide and not coincide with the boundaries
of the substances; in the latter case cells with several substances appear
and concentrations are introduced for consideration;
2. Continuous concordant representation of the flows of mass, energy,
momentum and other values at the approximation of convective terms of
the initial system of equations;
3. Donor-acceptor algorithm of convective flow computation to avoid
computation diffusion; basing on the fields of substance concentrations in
the vicinity of a donor cell the algorithm determines which substances and
in what ratio flow out from the cell containing several substances.
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Principles of the LEGAK technique 
When the difference scheme is being built, the system of conservation laws,
written for an arbitrary element of the space Ω, limited by the surface S, is

used:
( ) ,
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dt
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where vectors  F, G, H have the following components: 
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M=ρν  is the mass, comprised by an element of the space , Ω;,
P  is the pressure determined by the equation of state of the medium, p(ρ, e);
    is the deviator of the deformation velocity tensor;
    is the strain deviator, determined by Hooke's law and Mises’ yield condition;
    is determined by the law of motion of the surface S. 
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Other denotations are conventional.

(1)
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Principles of the LEGAK
technique

Solution of the system of equations (1) is carried out by integration
over time with the application of the splitting method (by Koven’a and Yanenko,
1981). For this purpose the initial system of equations (1) is split into two
subsidiary ones.

The first system – the Lagrangian stage – is obtained out of the
supposition, that the surface S moves with the same velocity as the substance,
that is at the first stage the following system of equations is solved:

(1)
dF

H dV
dt

!

= "#

At the second (Eulerian) stage it is supposed, that the substance is at
rest, while the surface S is moving. Thus, the system of equations to be solved at
the second stage, has the following view:

(1) (1) *( ) 0.
S

dF
G u u dS

dt
+ ! ="

        In its turn when the system of equations (2) is solved, the method of
splitting over physical processes is used.

(2)

(3)
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Principles of the LEGAK technique

Difference formulae for the system of equations 2 and
equation 3 are the generalization for the 3D case of
corresponding correlations, accepted at the computation
of axially symmetrical flows. At that the experience of
building difference formulae for the computation of 3D
non-stationary flows, accumulated during the
development of other techniques in VNIIEF (D-3,
MIMOZA, TREK) was used.
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Principles of the LEGAK
technique

As it has been indicated above, in the LEGAK technique the edges of
computational cells (hexahedrons) may not coincide with the contact

boundaries of substances.

In this case the cells containing several substances (mixed cells) occur 
/

i i
a M M= /

i i
V V! =is mass and   is volume concentrations of components; 

ei is the specific (for the unit mass of the given substance) intrinsic energy 

i
M

i
V   ,     are the mass and the volume of the substance number i, 

         contained inside the computational cell 

Each substance has its own equation of state Pi = Pi (ρi, ei) 
To determine the variation of densities of the components at the Lagrangian stage,

it is supposed, that: .
i

divu divu=

Thus, the rule of pressure P computation in a mixed cell follows from the condition
of the additivity of unit energies and the accepted method of approximation of the

equations of energies of components:
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=# where N is the number of substances in a mixed cell, 

i
! is the density of  the substance number  i
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Principles of the LEGAK technique

The difference scheme (the two-layer explicit one) has the first order
of accuracy  and is conditionally stable with the limitation of the step

of integration over time:

( ) ,u c kh! + <%

where h is the distinctive linear dimension of a computational cell, 
c is the sonic speed, 
u% is the velocity of grid motion in respect of the substance, k = 0.5 
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Program realization of the LEGAK-3D
technique

The basic principles of program realization of the
LEGAK-3D technique coincide with the principles of
realization of LEGAK-2D, made for the computation
of axially symmetrical flows.

In the LEGAK-3D technique the sheet-by-sheet data
organization is made. One of the families of
computational grid surfaces represents either
planes intersecting over one line (system axis), or
parallel planes.This family is the Eulerian one, the
planes of the sheets are fixed. In the sheets the
grids are built following the rules, accepted in the
LEGAK-2D technique.
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Program realization of the LEGAK-3D
technique



18 of 32

Program realization of the LEGAK-3D
technique

The flat structure of the sheets can be affected by the
module of Lagrangian gas dynamics computation. The
flat structure of the sheets is restored by grid correction
and value recalculation modules. Owing to this these
modules operate in two phases.
At the first phase points are projected on the sheets
and due to this changes of the grid values are
recalculated (convection flows through “intersheet”
edges of the hexahedrons.
At the second phase the computational grid on the
sheets is corrected and the corresponding recalculation
of the values is made (convection flows though
“intrasheet” edges of hexahedrons).
The types of computational grids in the sheets are the
same as in the LEGAK-2D technique.
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Program realization of the LEGAK-3D
technique

The LEGAK-3D technique allows to compute non-
stationary flows of continuum in Lagrangian-
Eulerian variables, which includes:

•  Computation of non-stationary gas dynamic
flows;

•  Computation of elastoplastic flows;
•  Computation of detonation wave distribution

with constant velocity and taking into account
the kinetics of the explosive break-up;

•  Consideration of material destruction.

Codes for the computations of the above
specified processes are realized as separate
computation modules.
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Program realization of the LEGAK-3D
technique

The software realization of the LEGAK-3D technique, as
well as the LEGAK-2D program realization, consists of
the computational and service parts.

The computational part is written in Fortran-90. It can
operate on both PC and other computation complexes,
which support Fortran-90 and the data transfer standard
MPI (MPI, 1994).

The service part, made to prepare problems and
process the results, is realized as a Windows-
application, written in C++; it functions on PC.



21 of 32

Parallelization of the LEGAK-3D technique
When the principles and schemes of the LEGAK-3D technique
parallelization were being developed the experience of the LEGAK-2D
parallelization was used. At that the main principles of parallelization
remained unchanged:

•  No software limitations of the number of used processors (the
limitation may arise out of the size of solved problem only);

•  Possibility to change the numbers of processors in the course of
problem solving;

•  Physical computation results do not depend on the numbers of used
processors (including one computer when the computations are held in
the scalar mode);

•  The main load, connected with the computations in the multiprocessor
mode, is put on the complex of support subprograms;

•  Portability of program complex to different computation systems with
distributed memory, which support the MPI data transfer standard;

•  Parallelization of computation programs is provided by means of
minimum alterations of their texts; operation in the multiprocessor
mode is organized analogously to one-processor mode.



22 of 32

Parallelization of the LEGAK-3D
technique

For LEGAK-3D parallelization the matrix

geometrical problem decomposition over

processors is used (with overlaps). At

that the computation portion for one

processor is several adjacent cells (in

rows and columns) of the computational

grid with complete data over all sheets.

Fig.1 represents problem fragmentation

into 9 fragments (3×3 per sheet).

Fig.1. Example of problem fragmentation into 9 fragments (3×3 per sheet). 

Problem-wise
fragmentation

Problem-wise
fragmentation

Data-wise
fragmentation

Data-wise
fragmentation
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Examples of computations
with the LEGAK-3D technique

Problem 1. Adiabatic expansion of a gas ellipsoid. The analytical solution of
this problem was obtained in the work (Nemchinov, 1965).

x ≥ 0, y ≥ 0, z ≥ 0
ax=3, ay=2, az=1
An ideal gas (γ=7/5) 
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Table 1. Problem 1 computation results. 
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Examples of computations
with the LEGAK-3D
technique

Problem 2. Development of Richtmyer-Mechkov’s 3D instability 
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Examples of computations
with the LEGAK-3D
technique

Problem 2. Development of Richtmyer-Mechkov’s 3D instability 
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t=10mcs t=12mcs

Examples of computations
with the LEGAK-3D technique
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Examples of computations with the
LEGAK-3D technique

Problem 3. Computation of Richtmyer-Mechkov’s instability 

3
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The initial grid was fragmented into 101 rows, 101 columns
and 101 sheets in the directions Z, X, Y respectively
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t = 750mcs, X = 0 t = 750mks, X = Y

t = 550mcs t = 660mks t = 750mcs

Examples of computations
with the LEGAK-3D technique

Problem 3. Computation of Richtmyer-Mechkov’s instability 
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Examples of computations
with the LEGAK-3D
technique

Problem 3. Computation of Richtmyer-Mechkov’s instability 
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3

00 0
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vacuum: 0см < r < 8.14см 

shell: 8.14см < r < 8.8см  

Expl.: 8.8см < r < 15см 
3,)1( =!= "#" eP

vacuum: 15см < r < 30см 

caloricity : Q=3.61 kJ/g
detonation rate : D = 7.6 km/s 

Problem 4. Expansion and compaction of the spherical shell 

Examples of computations
with the LEGAK-3D technique
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Problem 4. Expansion and compaction of the spherical shell 

Examples of computations
with the LEGAK-3D
technique
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Conclusion
1. A short review of approaches to the development of 2D and 3D
gas dynamic flow mathematical simulation, used by VNIIEF, is
made.
2. As an example the LEGAK-3D regular Lagrangian-Eulerian
technique is presented in more detail.
The LEGAK-3D technique for computation of 3D non-stationary
flows of multi-component continuum operates on multi-processor
computation systems with distributed memory.
The computations made with the LEGAK-3D technique proved its
abilities.
The computations, made in the multi-processor mode, showed the
acceptable efficiency of parallelization of the technique. In case of
matrix decomposition into 10 rows, 10 columns and 100 sheets the
efficiency was 60% for 100 processors.
Deeper parallelization (decomposition in the third dimension) is
supposed to be carried out at the following stage of the
development of LEGAK-3D program realization.
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THANK YOU for attention


